

Complete Characterization for Adjustment in Summary Causal Graphs of Time Series

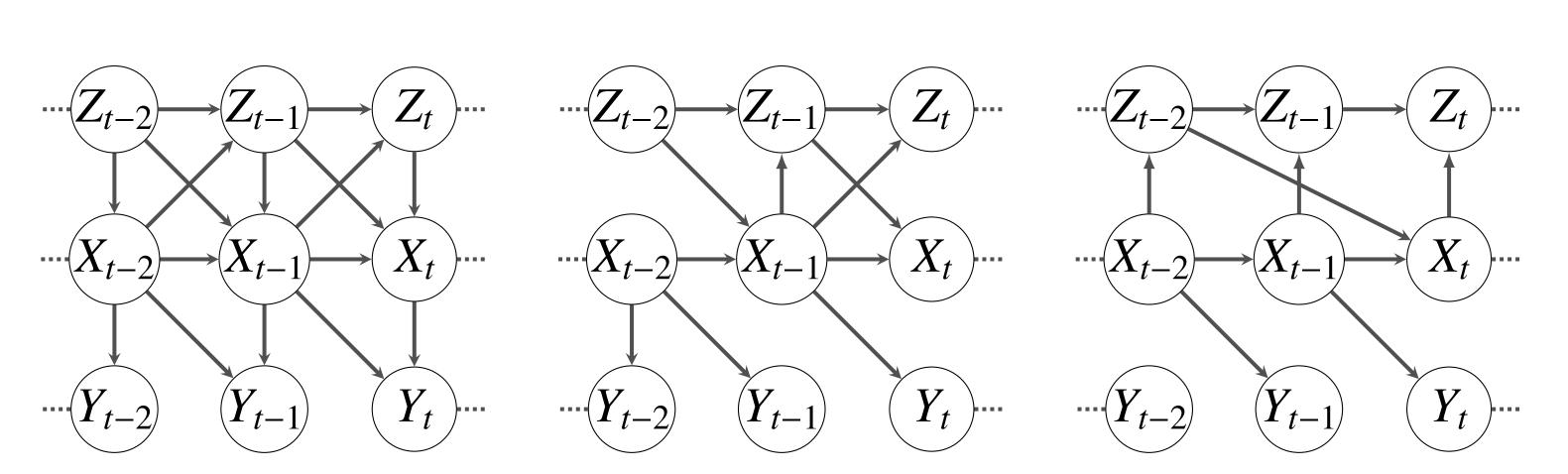
Clément Yvernes ¹ Emilie Devijver ¹ Eric Gaussier ¹

¹Univ Grenoble Alpes, CNRS, Grenoble INP, LIG

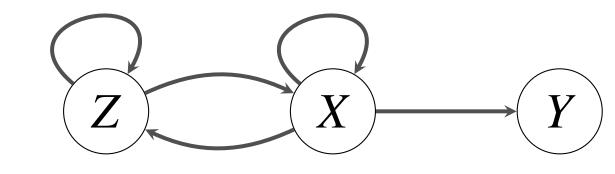
Too Long; Didn't Read

Identifiability by common adjustment in summary causal graphs can be decided in pseudo-linear time complexity.

Causal Graphs in Time Series



Three Full Time Causal Graphs (FTCGs), \mathcal{G}_1^f , \mathcal{G}_2^f and \mathcal{G}_3^f .



The Summary Causal graph (SCG) G^s , reduced from any FTCG in (a).

An SCG corresponds to a family of candidate FTCGs, denoted $C(G^s)$.

Assumptions

- Causal Sufficiency
- Consistency Through Time: Results are given both with and without this assumption.

Identifiability by Common Adjustment

In a given SCG \mathcal{G}^s , the total effect $P(y_t \mid do(x_{t-\gamma_i}^i)_i)$ is identifiable by common adjustment in \mathcal{G}^s if there exists a subset \mathbf{Z} of \mathcal{V}^f such that for any density P compatible with any candidate FTCG $\mathcal{G}^f \in C(\mathcal{G}^s)$, we have:

$$P(y_t \mid \operatorname{do}(x_{t-\gamma_i}^i)_i) = \begin{cases} P(y_t \mid (x_{t-\gamma_i}^i)_i), & \text{if } \mathbf{Z} = \emptyset, \\ \sum_{\mathbf{z}} P(y_t \mid (x_{t-\gamma_i}^i)_i, \mathbf{z}) P(\mathbf{z}), & \text{otherwise.} \end{cases}$$

Property: A set $\mathbb{Z} \subseteq \mathcal{V}^f$ satisfies the common adjustment criterion relative to $\mathcal{X}^f \coloneqq \left\{X_{t-\gamma_i}^i\right\}_i$ and Y_t in \mathcal{G}^s if, for every full-time causal graph $\mathcal{G}^f \in \mathcal{C}(\mathcal{G}^s)$, we have:

- 1. Forb $(X^f, Y_t, \mathcal{G}^f) \cap \mathbf{Z} = \emptyset$; and
- 2. \mathbf{Z} blocks all proper non-causal paths from \mathbf{X} to \mathbf{Y} in \mathbf{G} .

where the forbidden set Forb $(X^f, Y_t, \mathcal{G}^f)$ is the set of all descendants of any $W \notin X^f$ which lies on a proper causal path from X^f to Y_t .

Adjustment in SCGs

Common Forbidden Set: $C\mathcal{F} := \bigcup_{\mathcal{G}^f \in \mathcal{C}(\mathcal{G}^s)} \operatorname{Forb} \left(\mathcal{X}^f, Y_t, \mathcal{G}^f \right)$

Non-Conditionable Variables: $NC := CF \setminus X^f$

Remark. The set *NC* characterizes variables that must be excluded from adjustment sets when estimating the causal effect.

Main Theorem. The total effect is identifiable by common adjustment in G^s if and only if the following condition holds:

• For all $X_{t-\gamma_i}^i$ and all $\mathcal{G}^f \in \mathcal{C}(\mathcal{G}^s)$, \mathcal{G}^f does not contain any collider-free backdoor path going from $X_{t-\gamma_i}^i$ to Y_t that remains in $\mathcal{NC} \cup \{X_{t-\gamma_i}^i\}$.

In that case, a common adjustment set is given by $C := (V^f \setminus NC) \setminus X^f$.

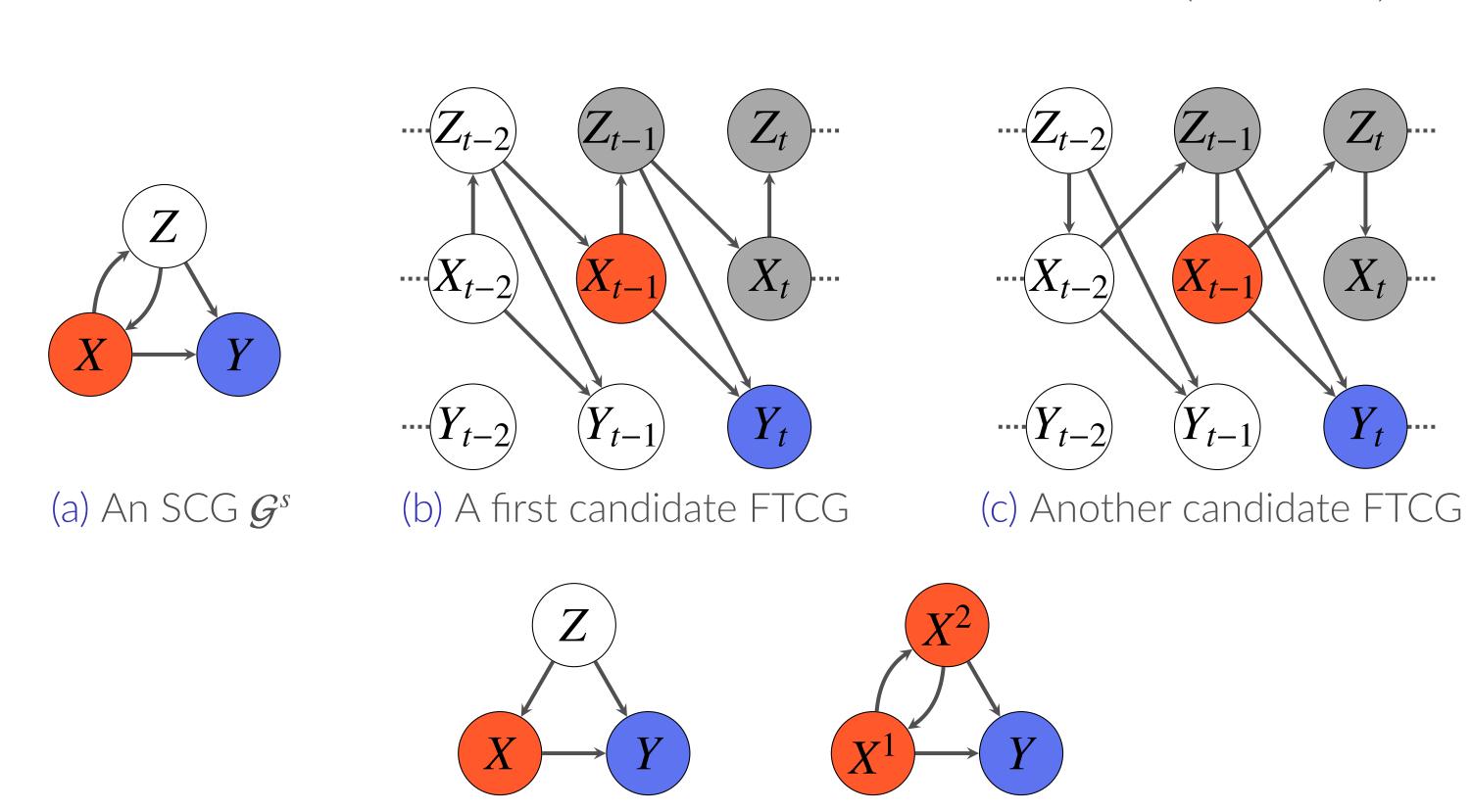


Figure 2. Consider $P(y_t \mid do(x_{t-1}))$ in (a), where the total effect is not identifiable by common adjustment. In contrast, $P(y_t \mid do(x_{t-1}))$ is identifiable in (d), and $P(y_t \mid do(x_{t-1}^1, x_{t-1}^2))$ is identifiable in (e). Orange vertex: the variable we intervene on, blue vertex: the response we are considering, gray vertices: elements of \mathcal{NC} .

(e) An SCG G^s

Algorithmic Characterization

- The condition in the Main Theorem can be decided by a sound and complete algorithm.
 - The algorithm runs in pseudo-linear complexity.

(d) An SCG G^s

Discussion & Perspectives

- Remove causal sufficiency
- Towards a sound and complete calculus in SCGs
- Algorithmic approaches may be key to tackling more complex forms of causal abstraction

References

- Anand, T. V., Ribeiro, A. H., Tian, J., and Bareinboim, E.(2023). Causal effect identification in cluster DAGS. AAAI Conference.
- Assaad, C. K., Devijver, E., Gaussier, E., Goessler, G., and Meynaoui, A. (2024). Identifiability of total effects from abstractions of time series causal graphs. UAI 2024.
- Perkovic, E., Textor, J., Kalisch, M., and Maathuis, M. H. (2016). Complete graphical characterization and construction of adjustment sets in markov equivalence classes of ancestral graphs. JMLR.